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Entanglement is the key resource in quantum information processing, and an entanglement witness (EW) is designed
to detect whether a quantum system has any entanglement. However, prior knowledge of the target states should be known
first to design a suitable EW, which weakens this method. Nevertheless, a recent theory shows that it is possible to design
a universal entanglement witness (UEW) to detect negative-partial-transpose (NPT) entanglement in unknown bipartite
states with measurement-device-independent (MDI) characteristic. The outcome of a UEW can also be upgraded to be an
entanglement measure. In this study, we experimentally design and realize an MDI UEW for two-qubit entangled states.
All of the tested states are well-detected without any prior knowledge. We also show that it is able to quantify entanglement
by comparing it with concurrence estimated through state tomography. The relation between them is also revealed. The
entire experimental framework ensures that the UEW is MDI.
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1. Introduction
Entanglement plays a key role in quantum informa-

tion processing, from quantum computation[1] to quantum
teleportation.[2] In particular, entanglement can provide more
security for quantum cryptography.[3] In such applications, we
need to quantify the entanglement of a quantum system. There
have been several well-known entanglement measures, such as
concurrence,[4] entanglement of formation,[5] negativity[6–8]

and random robustness.[9] All of these require estimating a
large number of density matrix elements, which is difficult
work for bipartite and multipartite quantum states. If we only
need to verify if a state has entanglement or not, the entangle-
ment witness (EW) is a good choice. By using a proper EW
operator, one can quickly receive a “yes” or “no” result, which
is much easier to achieve.

However, several studies show that conventional EW
(CEW) is measurement-device-dependent, because errors and
misalignments of the measurement devices can lead to in-
correct estimations of the quantities, incurring erroneous
conclusions.[10–12] Moreover, another problem of CEW is

that[13] one should have some information about the tested
states first, then the proper EW operator to detect the state
can be found or designed, otherwise one has to try the EW
operators randomly.

The recent work by Shahandeh et al.[14] has introduced a
measurement-device-independent (MDI) and universal entan-
glement witness (UEW) theory based on semiquantum game
framework,[15] which can be used to deal with the drawbacks
of CEW. A schematic diagram of the game framework is
shown in Fig. 1. Alice and Bob (players) share state ρ̂AB.
Charlie (referee) prepares quantum question states {τ̂A0

i } and
{ω̂B0

i } and sends to Alice and Bob respectively during each
round. Alice and Bob, respectively, measure the question state
and their own qubit, and then send their measurement out-
comes x, y to Charlie. Local operations and classical commu-
nication (LOCC) are allowed during the game. Charlie then
calculates the reward function from their classical responses.
If the outcome of the reward function is larger than 0, Alice
and Bob win the game and get the payoff (equal to the out-
come) from Charlie. Thus the aim of Alice and Bob is to
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make the payoff as large as they can. In this game, whether
the payoff will be larger than 0 is connected to whether there
is entanglement in two players’ shared state. And how large
the payoff can be is connected to how much entanglement in
their shared state. As referee, Charlie should ensure that two
players cannot win the game by cheating, i.e., they will never
win the game if their shared state does not have entanglement.

Alice Bob

x y

LOCC

Charlie

︿
ρAB

︿
τi

A
︿
ωi
B

Fig. 1. The scheme of extremal semiquantum nonlocal game. Players
(Alice and Bob) share state ρ̂AB, and then, they receive quantum ques-
tions τ̂

A0
i , ω̂

B0
i from referee (Charlie). After performimg local POVM

on their own part of shared state and the quantum question state, they
return classical answers x and y to Charlie. LOCC is allowed in this
game. If the shared state is entangled, then Alice and Bob can always
win this game (achieve payoff value larger than 0) as long as they per-
form suitable measurements.

To prevent two players from cheating, there are two re-
quirements for Charlie’s quantum question states {τ̂A0

i } and
{ω̂B0

i }. First, the question states should be nonorthogonal
to each other. Second, they should be able to form an ex-
tremal decomposable entanglement witness operator Ŵ de

sq .[16]

Then, only if Alice and Bob share negative-partial-transpose
(NPT)[17] entangled states, will they possibly be able to
achieve payoff larger than 0. Otherwise, no matter what mea-
surements they perform, they will never win, i.e., there will
never be positive outcomes. This is the MDI characteristic,
which prevents Alice and Bob from cheating. In other words,
two players cannot get positive rewards by cheating (e.g., per-
forming some special measurements) if they do not share a
pair of entangled states.

To achieve the maximum positive outcome, two players
should also try to find the optimal positive operator-valued
measure (POVM). It should be stressed here that, the maxi-
mum payoff that the players possibly achieve is proportional
to the amount of NPT entanglement in the shared state. There-
fore, if we replace the shared state with unknown states that
need to be witnessed, upon this semiquantum game frame-
work, we are able to design an MDI and universal entangle-
ment witness (MDI-UEW).

In this paper, we present and experimentally demonstrate
an MDI-UEW that has the ability to detect and quantify en-
tanglement at the same time. We first show that NPT entan-
gled states should be classified into different collections based
on their optimal EW operators. Without loss of generality,
we choose entangled states from four representative collec-
tions (including both pure and mixed states) as examples to
explain the MDI-UEW in detail. Our results demonstrate the
universality of MDI-UEW in witnessing NPT entanglement

of a low-dimensional bipartite system and verify the ability
of its outcome to quantify entanglement, which is comparable
to concurrence. Furthermore, we perform a theoretical anal-
ysis and a numerical simulation to reveal that the outcome of
MDI-UEW for an entangled state is less than or equal to its
concurrence.

2. Theoretical framework
2.1. Limitation of CEW and classification of NPT entan-

gled state

In CEW theory, the canonical way to design an effective
EW operator for a given entangled state is based on positive-
partial-transpose (PPT) criterion,[18] which is as follow:[16]

1. Take the partial transpose ρ̂TB of state ρ̂ (TB denotes
that the second qubit B takes transposition);

2. Obtain the eigenstate |ψ〉 of ρ̂TB , whose eigenvalue is
negative;

3. W =−2|ψ〉〈ψ|TB is the desired optimal EW operator.
In this paper, we change the sign of the EW operator by

multiplying it by −1 for the sake of consistency. Then we get
Tr(W ρ̂)> 0 for entangled states (corresponding to the defini-
tion of payoff in the semiquantum game) and Tr(W ρ̂)≤ 0 for
separable states.

Let us take Bell state |Ψ−〉 as an example; the eigenstate
with negative eigenvalue of its partial transpose is |Φ+〉, then
the corresponding EW is Ŵ =−2|Φ+〉〈Φ+|TB . Simply check
the result of Tr(Ŵ |Ψ−〉〈Ψ−|) and it shows that it is larger than
0. We can know that Ŵ is the effective EW operator. How-
ever, if we replace the state with the other three Bell states,
e.g., |Ψ+〉, Tr(Ŵ |Ψ+〉〈Ψ+|) is less than 0, that means |Ψ+〉 is
judged as separable state by Ŵ . Becasue of this limitation of
CEW, we have to divide the NPT entangled states into differ-
ent collections.

Definition Given an entangled state ρ̂AB, we say that it is
in the collection C|ψ〉 if and only if the eigenvector with neg-
ative eigenvalue of its partial transposition ρ̂

TB
AB is |ψ〉, where

|ψ〉 is an entangled state.
Then, we should know which collection a state is in be-

fore we choose an EW operator. The collection information is
what we call prior information of a state in this work.

In our experiment, we will choose input states from four
representative collections. According to CEW theory, it is im-
possible to pick out all entangled states by just one EW oper-
ator. In previous experiments on CEW, such as Refs. [19,20],
though there are lots of input states for testing, actually all the
states belong to one collection.

2.2. MDI-UEW

In the semiquantum game scheme, Charlie’s reward func-
tion is

RMDI
NPT

(
ρ̂AB;Ŵ de

sq

)
= max

ẐÃB̃
∑

i
βiR̄
(

ρ̂AB, ẐÃB̃|τ̂A0
i , ω̂

B0
i

)
, (1)
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where

Ŵ de
sq = ∑

i
βiτ̂

A0T
i ⊗ ω̂

B0T
i (2)

is an arbitrary extremal decomposable EW operator that is de-
composed into a combinations of quantum question states (T
denotes the transposition operation) with coefficient {βi} and

R̄
(

ρ̂AB, ẐÃB̃|τ̂A0
i , ω̂

B0
i

)
= Tr

[
ẐÃB̃

(
τ̂

A0
i ⊗ ρ̂AB⊗ ω̂

B0
i

)]
(3)

is the conditional probability. R̄ equals to the expectation value
of POVM ẐÃB̃ when they receive question states τ̂

A0
i and ω̂

B0
i

respectively. Ã (B̃) is a joint Hilbert space consisting of AA0

(BB0).
The RMDI

NPT

(
ρ̂AB;Ŵ de

sq

)
is the maximum among all possi-

ble combinations of R̄, and measurement basis ẐÃB̃ decides
whether this maximum can be achieved or not. The coefficient
βi is decided by the EW operator. The detailed calculations of
βi are in Appendix A.

Equation (1) gives an MDI-UEW for NPT entanglement
(reference [21] provides detailed proof for MDI). Only one
EW operator (that is equivalent to the combination of quan-
tum question states) is used by Charlie in this scheme, re-
gardless of what states Alice and Bob possess. As long as
they perform an optimal measurement basis (ẐÃB̃

opt), they always

obtain RMDI
NPT

(
σ̂AB;Ŵ de

sq

)
= 0 for any separable state σ̂AB and

RMDI
NPT

(
ρ̂AB;Ŵ de

sq

)
> 0 for any NPT entangled state ρ̂AB.[14] No

assumptions should Charlie make here that specific measure-
ments ẐÃB̃ have been correctly performed by Alice and Bob
according to MDI characteristic, because there are two neces-
sary conditions for Eq. (1) to have positive outcome. One is
that the two players perform the optimal measurements, and
the other is that the states they share have NPT entanglement.

2.3. Entanglement-witness measure

The maximal measurement outcome of MDI-UEW is de-
fined as EWM, that is,

E(ρ̂) = RMDI
NPT(ρ̂;Ŵ0), (4)

where Ŵ de
sq in Eq. (1) is specified as Ŵ0 = −2|Φ+〉〈Φ+|TB .

E(ρ̂) is convex and has a range from 0 to 1. E(ρ̂) = 0 for
any separable state, while E(ρ̂)∈ (0,1] for any NPT entangled
state. Thus, E(ρ̂) can be used as an entanglement measure.[14]

Ŵ0 is the best choice for definition of E(ρ̂), which significantly
simplifies our experiment. Besides, E(ρ̂) is equal to the neg-
ativity of the state in two-qubit system.[22,23] Details can be
found in discussion section.

3. Experimental setup

Our experimental setup for MDI-UEW is shown in Fig. 2,
where four photons are used. In the source part, two 2-mm β -
barium-borate (BBO) crystals produce the original entangled

photon pairs by type-I spontaneous parametric down conver-
sion (SPDC). The states of the photon pairs have the form of

1√
2

(
|HV〉+ e iφ |VV〉

)
.

Then, with some probability, two photon pairs are respec-
tively distributed into paths 2 and 3 and paths 1 and 4 with two
non-polarizing beam splitters, NPBS1 and NPBS2. The pho-
ton pairs going through the NPBSes simultaneously to paths 2
and 3 are used as target bipartite states ρ̂AB. We name them
photon pairs 2 and 3. While photon pairs are used to prepare
the question states τ̂

A0
i and ω̂

B0
i if they are reflected by the

NPBSes simultaneously, we name them photon pairs 1 and 4.
Two polarizers make them separable because only one compo-
nent of the original state |HH〉 can pass through the polarizers.

In this experiment, the tested (input) states are chosen
from four representative collections of entanglement, includ-
ing both pure states and mixed states. Using phase compen-
sators (PCs), time delay plates (TDPs), and half-wave plates
(HWPs) in path 2 and path 3, we prepare all Bell states and
several Bell diagonal states (mixture of any two Bell states in
a different proportion).[24]

By carefully selecting the phase of PC1, |Φ+〉 or |Φ−〉 are
prepared. When HWP2 is set at an angle of 45◦ and HWP1 is
set at an angle of 0◦, we can prepare state |Ψ+〉 and |Ψ−〉 as
well.

NPBS3 and NPBS4 are used to prepare the second Bell
state component of a Bell diagonal state. HWP3 is used to
tune the polarization of photon 3 while PC2 is used to tune the
relative phase between different polarizations. TDP is used to
make the transmitting part and reflecting part of NPBS3 deco-
herent.

States cosθ |HH〉+ sinθ |VV〉 are prepared from |Φ+〉
with the help of beam displacers BD1 and BD2. We change the
ratio between H-polarization and V-polarization of photon 3
by adjusting the angle of HWP4 and HWP5. Then redundant
amount of H- or V-polarization will be discarded when pass-
ing through BD2 and finally we obtain the desired states with
θ ∈ [0,π/2].

The HWP-QWP (quarter-wave plate) combinations in
path 1 and path 4 are used to prepare the question states in the
collection of |±x〉, |±y〉, |±z〉 (eigenstates of Pauli matrices).
There are a total of 12 pairs of {τ̂A0

i , ω̂
B0
i } (see Appendix A).

A complete set of POVM {ẐÃB̃}, used in our experiment,
can be expanded into combinations of σ⊗4

x , σ⊗4
y , σ⊗4

z , and I⊗4

(the Pauli matrix and identity matrix). Detailed information
is provided in Appendix B. Four QWP-HWP-PBS (polarizing
beam splitter) combinations in the measurement part are suf-
ficient to perform these measurements. By carefully adjusting
the time delay between photon pairs 2 and 3 and pairs 1 and
4, we collect four-photon events and calculate the rewards for
Alice and Bob according to Eq. (1).
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Fig. 2. Experimental setup for MDI-UEW. The original entangled photon pairs are generated by type-I SPDC in two 2-mm BBO crystals with the
form of 1√

2

(
|HV〉+ e iφ |VV〉

)
. The reflected parts of non-polarizing beam splitters NPBS1 and NPBS2 are used as question states.The transmitted

parts of NPBS1 and NPBS2 are used to prepare ρ̂AB. By selecting a suitable phase compensator PC1, |Φ+〉 or |Φ−〉 can be prepared. When half
wave-plate HWP2 is set at an angle of 45◦, and HWP1 is set at an angle of 0◦, |Ψ+〉, |Ψ−〉 can be prepared. The bypath of NPBS3 is used to
prepare the second Bell state component in the Bell diagonal state. HWP4 and HWP5 are used to change the ratio between H-polarization and
V-polarization in |Φ+〉, then a redundant amount of H- or V-polarization will be discarded when passing through beam displacer BD2. Then states
cosθ |HH〉+ sinθ |VV〉 are prepared. Wave-plate combinations in path 1 and path 4 are used to rotate the polarizations to encode photons 1 and 4
to the desired question states, τ̂

A0
i and ω̂

B0
i . The measurement part consists of four QWP-HWP-PBS combinations, where QWP and PBS denoting

quarter wave-plate and polarizing beam splitter, respectively. All the four photons are separately detected by single-photon avalanche diodes, but
the four-photon events are coincidently counted together and analyzed by a picosecond time analyzer with well-tuned delays.

4. Analysis of experimental results
The experimental results are shown in Fig. 3 and Ta-

ble 1. The error bars represent one standard deviation, which
is derived by using the Monte Carlo method. There are two
comparisons in Fig. 3. One is the entanglement-detection
ability between CEW and MDI-UEW, and the other is the
entanglement-quantification ability between entanglement-
witness measure E(ρ̂) and concurrence. Here, concurrence
is used as a reference and to make a uniform standard to judge
whether a state is entangled or not.

In Fig. 3(a), four Bell states are tested by both CEW and
MDI-UEW. MDI-UEW successfully witnesses the entangle-
ment in these states (orange bars) because their values are all
larger than 0, while CEW only witnesses the entanglement in
state |Ψ−〉 (green bars) because only one bar is larger than 0.

The EW operator in our experiment is W0 =

−2|Φ+〉〈Φ+|TB , which is only designed for state |Ψ−〉 and its
related collections C|Φ+〉 in CEW. According to the analysis
in Subsection 2.1, four Bell states come from four different
collections, thus one EW operator is not sufficient to correctly
detect entanglement in them based on CEW theory. There-
fore, the other three Bell states are inevitably recognized as
seperable states, where their outcomes are less than 0. The

design of an MDI-UEW is based on a specific EW operator,
but it does not depend on it. Any decomposable extremal EW
operator is available. Figure 3(a) shows that entangled states
in different collections can all be detected by an MDI-UEW.
This demonstrates the universality of MDI-UEW.

In Fig. 3(b), the tested states are cosθ |HH〉+ sinθ |VV〉,
where θ ∈ [0,π/2]. They are entangled states and in collec-
tion C|Ψ−〉 when θ 6= 0 or π/2. The EW operator W0 is unable
to detect their entanglement in CEW theory. The amount of
entanglement in this series of states varies according to the
value of θ . The black square points are the experimental val-
ues of their concurrence and the black solid line is the theo-
retical value. Concurrence is used here as reference. The blue
triangle points are the experimental results of CEW. We can
find that, no matter how much entanglement is in the states,
it always gives out −1; in other words, these states are all
recognized as separable states by CEW, which is incorrect.
The blue solid line is the theoretical value. The red circular
points are experimental results of MDI-UEW and the red solid
line shows their theoretical values. When θ equals 0 or π/2,
the corresponding state is |HH〉 or |VV〉. They are separable
states, thus the values of them are 0, which is a correct detec-
tion. With the increase of θ , the states become entangled and
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the MDI-UEW gives out values larger than 0 for them. More-
over, these values are associated with the amount of entangle-
ment in the states (referred to concurrence), which indicates
that the outcome of MDI-UEW is possible to be used as a kind
of entanglement measure.

(b)

Bell states

Φ
+(C|Ψ   >)- Φ

-(C|Ψ   >)

θ

+ Ψ
+(C|Φ   >)- Ψ

-(C|Φ   >)+

(a)
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0
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1.0

-1.0

concurrence
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CEM

0

-0.5

0.5

1.0

Fig. 3. Comparison between the MDI-UEW and CEW on entanglement
detection ability and comparison between the EWM and concurrence
on entanglement quantification ability. CEW is calculated by Tr(Ŵ0ρ̂).
EWM represents E(ρ̂), which is the witness outcome of MDI-UEW.
(a) Experimental results for the Bell states. The related collections of
Bell states are labelled in the parentheses. The orange bars represent
the experimental results of the EWM, the green bars represent the CEW,
and the blue bars represent the estimated concurrence. (b) Experimental
results of cosθ |HH〉+ sinθ |VV〉 (θ ∈ [0,π/2]). The theoretical values
of the EWM (EWMth, red dashed line) and concurrence (Con.th, black
solid line) are both sin2θ , while the theoretical value of CEW (blue
solid line) is −1. Red circular points represent the experimental results
of EWM (EWMexp), whereas the black square points represent the esti-
mated concurrence (Con.exp). Blue triangle points represent the results
of CEW without any ability for entanglement detection or quantification
for the target states.

Figure 3(b) also shows an interesting fact that, once the
EW operator is mismatched to the states in CEW, the expect
value will always be−1, no matter whether the states are max-
imally entangled, partially entangled, or even separable. In
other words, negative value of CEW provides no information.

MDI-UEW also works for mixed states. Table 1 shows
the experimental results for the Bell diagonal states. The
EW operator W0 only witnesses entangled states in collections
C|Φ+〉 according to CEW theory. State 1 is in this collection,
and thus it can be correctly detected. However, state 2 and
state 3 are in the collections C|Ψ−〉 and C|Ψ+〉, respectively.
Therefore, it is not surprising that the outcomes of CEW for
these two are negative and they are judged as separable. Mean-
while, MDI-UEW successfully overcomes this problem, be-
cause its outcomes for these three states are positive.

The analysis above has confirmed the advantage of MDI-
UEW in detecting entanglement over CEW. Next we turn to
the comparison between EWM E(ρ̂) and concurrence in the
entanglement-quantification ability. Concurrence is a well-
defined entanglement measure, and if EWM E(ρ̂) can provide
similar quantification for entangled states, this can guarantee
the ability of EWM to be a kind of entanglement measure.

Concurrences of states in Fig. 3 are achieved by perform-
ing full state tomography. The blue bars in Fig. 3(a) are the
experimental estimated concurrences of Bell states, which are
maximally entangled states with theoretical values as 1. The
orange bars are the experimental results of EWM, and all of
them have reached the theoretical value 1. In Fig. 3(b), the
theoretical values of both EWM and concurrence are sin2θ ,
and the experimental results achieve perfect agreement with
the theoretical predictions. The states in Table 1 are mixed
states. The concurrence of them is |2p−1| in theory, so does
the EWM. Summarizing the experimental results, the ability
of EWM as a kind of entanglement measure has been con-
firmed. However, we should stress that, the evidence here is
not sufficient to claim that EWM is the same as concurrence.

Table 1. Experimental results for the Bell diagonal states.

States p EWMth. EWMexp. CEWth. CEWexp.

State 1 0.7 0.4 0.393±0.029 0.4 0.393±0.033
State 2 0.55 0.1 0.076±0.031 −1 −0.980±0.020
State 3 0.4 0.2 0.173±0.031 −0.2 −0.211±0.027

State 1 = p|Ψ−〉〈Ψ−|+(1− p)|Φ+〉〈Φ+|,

State 2 = p|Φ+〉〈Φ+|+(1− p)|Φ−〉〈Φ−|,

State 3 = p|Ψ−〉〈Ψ−|+(1− p)|Φ−〉〈Φ−|.

5. Discussion

The values of the concurrence and EWM are equal for
the tested states, however, they are actually two different en-
tanglement measures, and EWM E(ρ̂) of a state is less than or
equal to its concurrence. Negativity is the bridge for these two
measures, which is also an entanglement measure.

According to Theorem 23 and Lemma 6 in Ref. [23], the
definition of negativity of a two-qubit state is as follows:

N(ρ̂) = 2|λ0|=−2λ0, (5)

where λ0 is the minimum negative eigenvalue of ρ̂TB . At the
same time, EWM reads

E(ρ̂) = RMDI
NPT(ρ̂;Ŵ0) =−2λ0. (6)

The detailed calculation is in Appendix D.
Comparing Eq. (5) with Eq. (6), it is obvious that the

EWM is equivalent to the negativity of the states in a two-
qubit system.

Then, it has been proved that the negativity of a state is
less than or equal to its concurrence. Therefore, the same is
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true for the EWM in a two-qubit system. And the negativ-
ity/EWM will equal concurrence if the eigenstate with nega-
tive eigenvalue of ρ̂TB is a Bell state (up to local unitary trans-
formation) (see Theorem 25 in Ref. [23]).

The states we used in our experiment are from the four
collections C|Ψ−〉, C|Ψ+〉, C|Φ−〉, and C|Φ+〉, thus their eigen-
states with negative eigenvalues are Bell states. Note that, the
related eigenstates with negative eigenvalues are labelled at
the subscript of each collection. For example, any state in col-
lection C|Ψ−〉 has common eigenstate with negative eigenvalue
|Ψ−〉. Therefore, the EWM of the input states is theoretically
equal to the concurrence as shown in Fig. 3. In other cases,
EWM is always less than concurrence.

Figure 4 shows numerical simulation of EWM and con-
currence for a series of asymmetric states (which are useful in
one-way steering[25,26])

ρ̂asym. = p|ψ〉AB〈ψ|+(1− p)ρ̂A⊗
IB

2
, (7)

where |ψ〉AB = cosθ |HH〉+ sinθ |VV〉 and ρ̂A is reduced den-
sity matrix of |ψ〉AB〈ψ|. p ∈ [0,1] while θ ∈ [0,π]. These
states are separable when p ≤ 1/3 or θ = π/2. Otherwise,
they are entangled. Generally speaking, for entangled states
in Eq. (7), their eigenstates with negative eigenvalues are not
Bell states, therefore, the EWMs of them are always less than
concurrence. The inset of Fig. 4 shows that EWM is quite
different from concurrence.
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Fig. 4. Concurrence and EWM for a series of asymmetric states. States
are defined in Eq. (7), the two parameters (p,θ) are united as x, which
is p = 0.01x and θ = 0.01xπ . EWM of a state is less than or equal to
its concurrence.

6. Conclusion
We introduce MDI-UEW to solve the two drawbacks

of CEW, which is measurement-device-dependent and needs
prior information about the tested states. The MDI characteris-
tic of MDI-UEW removes the trust from the measurement de-
vices (including measurement bases and measurement agents).
And the characteristic of universality enables us to witness
NPT entanglement of unknown bipartite states with limited

dimensions. Four representative collections of NPT entangled
states are used as examples in our experiment, and MDI-UEW
successfully witnesses all of them while CEW is only able to
detect one collection. Moreover, we find EWM E(ρ̂) (the
outcome of MDI-UEW) can directly quantify the amount of
entanglement. This gives MDI-UEW another advantage over
CEW. Concurrence of the target states is estimated as a refer-
ence in our experiment. We have demonstrated that EWM has
sufficient ability to quantify entanglement comparable to con-
currence and theoretically prove that EWM is always less than
or equal to concurrence, followed with a numerical demon-
stration for a series of asymmetric states.

Appendix A: Entanglement witness operator

The EW operator used in the experiment is Ŵ0 =

−2|Φ+〉〈Φ+|TB . According to Ref. [21], one possible expan-
sion of Ŵ0 is as below:

1. βs,t =−δs2,t2
3δs1,t1 −1

3
, where s = (s1,s2) and t =

(t1, t2), with s1, t1 = 0,1 and s2, t2 = 1, . . . ,3; δi, j is the
Kronecker delta;

2. τs =
I+(−1)s1 σs2

2 , ωt =
I+(−1)t1 σt2

2 .

Then, Ŵ0 = ∑s,t βs,t τ̂
A0T
s ⊗ ω̂

B0T
t holds. According to the val-

ues of s and t, only 12 combinations of them give out non-zero
βs,t .

Appendix B: Measurement basis

If the EW operator is Ŵ0 = −2|Φ+〉〈Φ+|TB and the
target state is in collection C|Φ+〉, the measurement basis

has the form below: ẐÃB̃ = |Φ+〉Ã〈Φ
+| ⊗ |Φ+〉B̃〈Φ+| +

|Φ−〉Ã〈Φ
−| ⊗ |Φ−〉B̃〈Φ−| + |Ψ+〉Ã〈Ψ

+| ⊗ |Ψ+〉B̃〈Ψ+| +
|Ψ−〉Ã〈Ψ

−| ⊗ |Ψ−〉B̃〈Ψ−|. However, full Bell state mea-
surements (BSMs) are impossible to be implemented with
linear optical system.[27] Luckily, in our method, it does
not matter to Charlie what measurement is being done and
how it has been performed by Alice and Bob.[14] That
means, BSM is not the necessary part in the scheme.
Thus, we expand ẐÃB̃ into combinations of σ⊗4

x , σ⊗4
y ,

σ⊗4
z , and I⊗4, and obtain ẐÃB̃ =

1
4
(
σ
⊗4
x +σ

⊗4
y +σ

⊗4
z + I⊗4),

which is able to be performed with linear optical sys-
tem. The other three POVMs used in the experiment are
1
4

(
−σ⊗4

x +σ⊗4
y −σ⊗4

z + I⊗4
)
, 1

4

(
σ⊗4

x −σ⊗4
y −σ⊗4

z + I⊗4
)
,

and 1
4

(
−σ⊗4

x −σ⊗4
y +σ⊗4

z + I⊗4
)
, which are the optimal

measurements for states in collections C|Ψ−〉, C|Ψ+〉, and
C|Φ−〉, respectively. These four bases form a complete set of
POVM.
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Appendix C: Classification of the Bell diagonal
states

For state p|Φ+〉〈Φ+| + (1 − p)|Φ−〉〈Φ−|, the eigen-
values of its partial transposition are 1/2, (1−2p)/2, and
(−1+2p)/2. When p < 1/2, (−1+2p)/2 is the negative
eigenvalue, and its corresponding eigenvector is |Ψ+〉. Ac-
cording to the classification rule of NPT entanglement de-
scribed in the main text, the state is in collection C|Ψ+〉. When
p > 1/2, the negative eigenvalue is (1−2p)/2 with the eigen-
vector |Ψ−〉, which means that the state is in collection C|Ψ−〉.
This classification rule is suitable for the other two Bell diag-
onal states in Table 1 of the main text.

Appendix D: The reason to choose Ŵ0

According to the canonical EW-design method mentioned
in the main text, for each two-qubit NPT entangled states ρ̂ ,
suppose its optimal EW is Ŵopt = −D|ψ〉〈ψ|TB (D = 2 for
two-qubit system), then

Tr(Ŵoptρ̂) =−Dλ0 =−2λ0, (D1)

where λ0 is the minimum negative eigenvalue of ρ̂TB .
Suppose that Charlie prepares a game Jde

sq correspond-
ing to the Schmidt rank-2 decomposable extremal EW (EEW)
Ĵde =−2|ξ 〉〈ξ |TB , which is not matched to ρ̂ . Then

RMDI
NPT(ρ̂; Ĵde) =−2qλ0, (D2)

where q∈ (0,1] is the success probability that |ξ 〉 can be trans-
formed into |ψ〉 via a stochastic LOCC (SLOCC) map.[28,29]

Equation (D2) gives a unique NPT entanglement measure cor-
responding to game Jde

sq .
If q in Eq. (D2) can be a constant, then there is only one

parameter in the equation, which will make the experiment
much easier. Luckily, Ŵ0 can be transformed into any other
Schmidt rank-2 decomposable EEW by using LOCC (deter-
ministically) according to the proof of Theorem 2 in the sup-
plemental material of Ref. [14]. Because the transformation is
deterministic, q will equal 1, and we obtain

RMDI
NPT(ρ̂;Ŵ0) =−2λ0, (D3)

There are three advantages if Ŵ0 is used as fixed EW op-
erator in our experiment:

• Compared to Eq. (D2), equation (D3) has only one pa-
rameter determined by ρ̂ .

• Generally, Eq. (D3) ≥ Eq. (D2), because 0 < q ≤ 1. If
q is too small, the outcome will be more difficult to be
measured.

• LOCC is much easier to be performed than SLOCC.

Thus, we would like to choose Ŵ0 as the fixed operator to
simplify our experiment.

Appendix E: Method to search optimal Ẑ

Given the witness operator Ŵ0, the optimal measurement
basis has a general form of

Ẑgeneral =4×


cos2 θ 0 0 cosθ sinθ

0 0 0 0
0 0 0 0

cosθ sinθ 0 0 sin2
θ


⊗|Bell states〉〈Bell states|, (E1)

where θ ∈
(
0, π

2

)
(determined by the target states and it can be

left unknown) and |Bell states〉 represents one of the four Bell
states |Φ+〉, |Φ−〉, |Ψ+〉, or |Ψ−〉. Therefore, there are four
forms of Ẑgeneral, and they form a complete POVM set.

Ẑgeneral can be decomposed into combinations of Pauli
matrices as follows:

cos2 θ 0 0 cosθ sinθ

0 0 0 0
0 0 0 0

cosθ sinθ 0 0 sin2
θ


=

1
16

(
sin2θ

(
σ
⊗2
x −σ

⊗2
y
)
+
(
I⊗2 +σ

⊗2
z
)

+2
(

cos2
θ − 1

2

)
(σz⊗ I + I⊗σz)

)
, (E2)

|Φ+〉〈Φ+|= 1
4
(I⊗2 +σ

⊗2
x −σ

⊗2
y +σ

⊗2
z ). (E3)

The other three Bell states have a form similar to |Φ+〉, the
only difference is the sign of each term.

Here are the steps for players in the semiquantum non-
local game to try every possible measurement basis for the
unknown state:

• Perform the measurement basis of Ẑgeneral, e.g. σ⊗2
x ⊗

σ⊗2
y , one by one;

• Record the coincidence counts of four Ẑgeneral;

• Send all the coincidence counts back to Charlie (ref-
eree).

For Charlie, the only thing to do is to calculate RMDI
NPT

based on coincidence counts of those four Ẑgeneral and find the
maximum over θ in (0,π/2) among them. The maximum is
exactly the amount of NPT entanglement of the target state.

Note that, there is no need for the players to know the
target states beforehand. Our method is equivalent to the pro-
cess that the players transform Charlie’s EW into another that
is suitable for the target states through changing the measure-
ment bases, but they actually do not know which EW they have
acquired. It is the ergodic process of measurement bases that
finds the suitable EW. In our method, this ergodic process only
appears in the data-calculation step done by Charlie. This is
practical in two-qubit system.

In our experiment, the tested entangled states are chosen
from four representative collections. Because they have good
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symmetry, the θ in Ẑgeneral for them equals π/4, and their op-
timal measurements can be expressed in a much simpler form
presented in Section 3 in our manuscript.
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